A Discovery Program of Neutrino Experiments

Karsten M. Heeger Snowmass on the Mississippi, July 31, 2012

Neutrino sources provide many opportunities

Tools of Discovery - Neutrino Detectors

detectors must match requirements of v sources, leads to a broad field with a variety of detectors and techniques

Non-accelerator based

The First Anomaly

Cl-Ar Solar Neutrino Experiment at Homestake

"deficit" of solar neutrinos

experiment only sensitive to v_e

standard solar model

Discoveries of Neutrino Oscillation

1968 Ray Davis detects 1/3 of expected solar neutrinos. (Nobel prize in 2002)

1998 SuperK reports evidence for oscillation of atmospheric neutrinos.

2001/2002 SNO finds evidence for solar v_e flavor change.

2003 KamLAND discovers disappearance of reactor \overline{v}_e

2012 Daya Bay, Double Chooz, RENO measure θ_{13}

2013 T2K sees v_e appearance

Neutrino Oscillation Implies Neutrino Mass

mass eigenstates ≠ flavor eigenstates

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

flavor composition of neutrinos changes as they propagate

Observables in oscillation experiments

energy E and baseline L oscillation frequency Δm^2 oscillation amplitude θ

Parameterized in a mixing matrix

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

$$P_{i\to j} = \sin^2 2\theta \sin^2 \left(1.27\Delta m^2 \frac{L}{E}\right)$$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

Neutrino Oscillation Measurements

Lots of Experimental Data

- atmospheric v_{μ} and \overline{v}_{μ} disappear most likely to v_{τ} (SK, MINOS)
- accelerator v_{μ} and \overline{v}_{μ} disappear at L~250, 700 km (K2K, T2K, MINOS)
- accelerator v_μ appear as v_e at L~250, 700 km (T2K, MINOS)
- solar v_e convert to v_{μ}/v_{τ} (Cl, Ga, SK, SNO, Borexino)
- reactor v̄_e disappear at L~200 km (KamLAND)
- reactor v̄_e disappear at L~1 km (DC, Daya Bay RENO)

Experiments have demonstrated oscillation L/E pattern

matter effects can be probed in long-baseline experiments or extreme environments

Neutrino Mixing is Different

Mixing Angles

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 0.8 & 0.5 & U_{e3} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \quad \begin{array}{c} \textbf{U}_{\text{MNSP}} \ \textbf{Matrix} \\ \textbf{Maki, Nakagawa, Sakata, Pontecorvo} \\ \end{array}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2+i\beta} \end{pmatrix}$$

atmospheric

reactor, accelerator solar, reactor

0νββ

Neutrino Oscillation Measurements

Experiments provide complementary data

	Dominant	Important
Solar Experiments	$\rightarrow \theta_{12}$	Δm^2_{21} , $ heta_{13}$
Reactor LBL (KamLAND)	$ ightarrow \Delta m^2_{21}$	θ_{12} , θ_{13}
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$\rightarrow \theta_{13}$	$\Delta m^2_{ m atm}$
Atmospheric Experiments	$ o heta_{23}$	$\Delta m^2_{ m atm}$, $ heta_{13}$, $\delta_{ m cp}$
Accelerator LBL ν_{μ} Disapp (Minos)	$\rightarrow \Delta m_{ m atm}^2$	θ_{23}
Accelerator LBL ν_e App (Minos, T2K)	$ ightarrow \delta_{ m cp}$	θ_{13} , θ_{23}

Gonzalez-Garcia et al, ICHEP2012

Complete suite of measurements can over-constrain the 3-v framework

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

From Anomalies to Precision Oscillation Physics

Recent Anomalies

Anomalies in 3-v interpretation of global oscillation data

LSND ($\overline{v_e}$ appearance) MiniBoone ($\overline{v_e}$, v_e appearance) Ga anomaly (v_e appearance) Reactor anomaly ($\overline{v_e}$ disappearance)

new oscillation signal requires $\Delta m^2 \sim O(1eV^2)$ and $sin^2 2\theta > 10^{-3}$

New physics or experimental artifacts?

Planning experiments with reactors, radioactive sources, and accelerators to confirm/refute short-baseline anomalies

Neutrinos - Open Questions

- Neutrino have mass, but why are they so light?
- What is the absolute mass scale?
- Do neutrinos have Majorana mass?
- Normal or inverted mass ordering?
- Is θ_{23} maximal?
- CP violation?
- Are there more than 3v?

Studying neutrino flavor change as a function of distance and energy

accelerator-based program over short and long baselines

 $\nu_{\mu}^{\rightarrow}\nu_{\mu}$

7/13/13

measuring appearance and disappearance

LBNE 34kt, 5 yrs, v , Disappearance Beam: 120 GeV. 700kW 5 years v-mode v, NC Bg

A staged program of experiments for the next decade

NOvA

MINOS+

Minerva

detectors at various scales

A phased development of accelerator capabilities

Searching for CP violation

exposure of order of Mt.MW.yr, very long baseline (> 1000 km) and tight control of systematics (< 2% on signal) is needed to reach CKM level precision

Determining the mass hierarchy

Mass Hierarchy Sensitivity

alternative approaches to mass hierarchy:

reactor experiments at ~50km baseline; atmospheric neutrinos

Oscillation Physics with Atmospheric Neutrinos

Atmospheric neutrinos observable in a large underground detectors are sensitive to all currently unknown oscillation parameters

large underground detectors enable other physics, e.g. proton decay searches

multi-purpose detectors when placed in beam

Importance of Mass Hierarchy

What is the flavor content of the lightest neutrino mass state?

Knowing the mass hierarchy will help us understand the nature of neutrino mass from neutrinoless double beta-decay ($0v\beta\beta$).

$$\Gamma_{0\nu} = G_{0\nu} \mid M_{0\nu} \mid^2 \left\langle m_{\beta\beta} \right\rangle^2$$

0vββ depends on effective neutrino mass

Majorana or Dirac Neutrino Masses?

Neutrinoless double beta decay is the only feasible experimental approach to establish Majorana mass of neutrinos

observation of $0\nu\beta\beta$ would imply

- lepton number non-conservation
- Majorana nature of neutrinos

$0\nu\beta\beta$ allow us to determine

- effective neutrino mass

Several technologies feasible. Ready to explore the inverted hierarchy region.

Majorana neutrino mass = beyond SM physics

Absolute Neutrino Mass

Precision measurements of beta decay to determine absolute neutrino mass

$$\frac{dN}{dT} = \frac{G_F \cos \theta_C}{2\pi^3} |M_{\text{nuc}}|^2 F(Z,T) (T+m) (T^2 + 2mT)^{1/2} (T_0 - T) \sum_i |U_{ei}|^2 [(T_0 - T)^2 - m_i^2]^{1/2}$$

For m₁≥100 meV and no sterile neutrinos, the beta spectrum simplifies to an "effective mass"

$$m_{\beta} = \left[\sum_{i} \left| U_{ei} \right|^2 m_i^2 \right]^{\frac{1}{2}}$$

Smallness of neutrino mass may be related to GUT- or Planck-scale physics.

Synergies and Applications - Examples

Cyclotrons for neutrino physics (and industrial applications)

RIKEN K2600 SUPERCONDUCTING RING CYCLOTRON

Neutrino detectors for reactor monitoring and non-proliferation

remote discovery of undeclared nuclear reactors with large detectors at km scale

US Short-Baseline Experiment

reactor antineutrino studies at short baselines

Summary

- Recent discoveries have shown that neutrinos mix and have mass. Evidence for new physics.
- A staged program of neutrino oscillation experiments is underway to make precision measurements of oscillation parameters, test 3-flavor paradigm, and understand neutrino interactions.
- Historic anomalies have turned into discoveries of solar and atmospheric neutrino oscillations. Neutrinos may continue to surprise us!
- The nature of neutrino mass is not yet understood and may hold the clue to physics beyond the Standard Model.
- Synergies with instrumentation and technology developments; connections with other frontiers.

This is not a comprehensive summary. Apologies for any omissions. Thanks to many colleagues for input, figures, and comments.